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Introduction 
 Crypto-currencies have garnered a lot of attention by governments and internet enthusiasts 

over the past three years. These currencies are celebrated for their security and speedy transactions in a 

modern era of digital commerce. Bitcoin was the first of these currencies to gain a large advantage over 

subsequent iterations. Bitcoin was first conceived by Satoshi Nakamoto who mentioned the concept of a 

crypto-currency in his paper titled Bitcoin. It featured new concepts such as proof of work and transactions 

which utilized hash-based encryption.  

One particular alternative crypto-currency is known as Litecoin. Backed by a memory-intensive 

algorithm known as Scrypt, many crypto-currency enthusiasts have decided to celebrate this particular coin. 

Scrypt expands on Bitcoin’s proof of work algorithm by adding the amount of work it takes to commit a 

transaction within the Litecoin network. Scrypt forces more work on the device that is being used to perform 

the algorithm by making frequent memory requests. This makes it difficult to create specialized hardware to 

create new coins and to commit transactions due to the nature of memory intensive applications.  

Creating specialized hardware is very important for the overall health of a crypto-currency. It allows 

for investors and third parties to help grow the currency into a valuable form of exchange. Because Bitcoin’s 

proof of work algorithm is not as intensive, it was much easier to create an ASIC (Application Specific 

Integrated Circuit) to help mine those coins faster. Third parties were able to invest in Bitcoin’s growth and it 

is now the most valuable crypto-currency in existence today. Due to the nature of Litecoin, however, the ASIC 

development has not been as fast. Many people have requests ASICs be made for Scrypt, but there has not 

been any development until now.  

As part of this research project, different solutions and strategies for developing a Litecoin ASIC were 

explored. The research began with finding and compiling Litecoin source code. Determining which portion of 

the Scrypt algorithm was the most intensive was important for determining how best to optimize the circuit. 

Compiling the source code using different optimization strategies was useful for determining what portion of 

the code would be able to be sped up or perhaps designated a special portion of the circuit.  

The most expensive part of the algorithm is the memory-hard salsa20. In order to reduce the overall 

impact that this portion of the Scrypt algorithm had on the overall runtime, different memory solutions to be 

implemented into a cache were explored. By utilizing the proximity and speed of a cache for this particular 

circuit, the overall speed of the algorithm would be drastically increased. Different memory technologies, 

such as SRAM, STT-RAM, MRAM, PCRAM, and even DRAM were explored as potential candidates. Due to the 

experimental nature of some of these options, SRAM was found to be the fastest candidate.  

The final portion of the research was to design and benchmark a schematic of the ASIC in Verilog 

code. There were some significant benefits to producing the ASIC, including reduced cost for production over 

current alternatives. The cost of production and potential next steps were explored in order to generate an 

idea of what it would take to actually produce a real ASIC. It was important to take into consideration the 

time to create an ASIC given the rapidly changing market of crypto-currencies as well and the upcoming 

competition in the ASIC market.  
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Background 
 Crypto-currencies are a cross between a fiat currency and a commodity.  They use cryptography to 

ensure safe and secure transaction between parties1. Crypto-currencies have garnered much attention over 

the past four years due to their revolutionary method of how currency can be exchanged and used digitally, 

bypassing centralized government and financial institutions. The inception of these currencies began with a 

paper written by Satoshi Nakamoto who wrote “Bitcoin: A Peer-to-Peer Electronic Cash System”. He 

suggested a new system that allowed online payments to be sent directly from one party to another without 

a need for a financial institution (Nakamoto, 1).  

Satoshi Nakamoto’s Peer to Peer Coin  
By replacing online electronic transactions with crypto-currencies, people would not have to be as 

concerned about their online information being publicly available. Each transaction required chain of digital 

signatures by way of public and private keys. The public key could be well known as a destination for coins, 

but the private key is necessary to be a source of coins. Each transaction would be protected by a proof of 

work, or hashing algorithm that would prove that the transaction is valid. The only way a user could submit 

their exchange would be by performing the hashing algorithm on their end of the computer. Each crypto-

currency was to have its own blockchain, a public ledger, of all transactions that have occurred on the 

network so far. Fraud cannot occur in such a system.  

 

Figure 1 - Each Owner's public key and private key are used to provide a 
signature of a transaction to owners that appear later in the chain of 
transactions (Nakamoto, 2) 

The hashing algorithm that is primarily used by Bitcoin is known as SHA-256. This algorithm, in 2009, 

was originally quite secure and had not been easily cracked. SHA-256 is a very popular hashing algorithm for 

many crypto-currencies. Collisions in the Bitcoin block chain would cause an overlap of transaction data. But 

because of hashing, the odds of having a collision in the blockchain are minimal. The odds of a collision 

                                                             
1 http://www.amazon.com/Bitcoin-Revolution-Ending-Tyranny-Profit-ebook/dp/B00CAX5OZQ 
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happening in SHA-256 are 
1

2128
. These odds, multiplied by the approximate 52500 transactions that happen 

per year for Bitcoin, are minimal enough that a collision will likely never occur.  

Bitcoin’s popularity as a currency has been due to many exchanges and users that have grown to 

support and mine in the network. The open source nature of the coin allowed users to design versatile 

program such as CPUMiner and CGMiner which could both be used to mine these coins. Various alternate 

currencies were created in response to this excitement. These included Namecoin and Litecoin. Litecoin in 

particular was created with a different proof of work algorithm known as Scrypt.  

 Scrypt and How it Improves Bitcoin’s Proof of Work 
 Litecoin was the first Crypto-currency to popularize the idea of Scrypt as an alternative to SHA-256 

based coins. Bitcoin ASICs made it difficult for new, Sha-256 based Alt Coins to gain popularity because their 

difficulty was going up so fast that  large communities of people were not able to get large quantities of the 

currency via solo mining. Scrypt Cryptocurrencies, however, do not have large support via ASICs yet. Scrypt 

Alt Coins are typically mined solely by GPU miners. These alternative Cryptocurrencies have a market cap 

much smaller than that of Bitcoin2. Many attribute this lack of value to the lack of investment in Scrypt coins 

and lack of ASICs. The current lack of ASICs for Scrypt Cryptocurrencies are due to the nature of Scrypt and 

how it creates a larger computational problem than solely Sha-256.  

What is Scrypt? 
 Scrypt was suggested by Colin Percival as a memory-hard algorithm to help create a system for 

password-key derivation. In his paper from May 2009, he describes a new methodology for hashing values 

that is not easily brute-forced. Key derivation functions are functions that will generate a derived key from a 

password. This key can be generated dynamically every time a password is entered, and tested with the 

original derived key to determine if the keys are a match. This is superior to storing a single password 

because it does not expose the actual password to potential thieves (Percival, 2).  

 In order to break key derivation functions, a hacker might attempt to find user passwords by hacking 

into a server and pulling all database info about all users. For most key derivation functions, the only feasible 

option is to test all possible passwords until the correct value is found, otherwise known as a “brute force” 

attack3. The rate at which a hacker can test passwords is linearly related to the length of time it takes to 

derive a key to test if the password is correct. This way, if the designer of the algorithm can make the 

algorithm twice as long, it will take twice as long to crack the password. Originally, Sha-256 was a very good 

candidate for such functionality, but soon after it was popularized many computer architects were able to 

determine how to make ASICs to solve SHA-256 passwords quickly. 

 In order to combat this potential flaw in key derivation functions, the concept of “memory-hard” 

algorithms was invented. A memory hard algorithm will need to access random-access-memory, or RAM, 

frequently as part of its runtime. Typically, these queries can add significant amount of time to the overall 

                                                             
2 As of this writing, the coin market cap of Bitcoin is $5,654,660,751 versus Litecoin which is only $296,745,377. 
These two currencies have the highest market caps out of all other Cryptocurrencies. 
3 http://searchsecurity.techtarget.com/definition/brute-force-cracking 
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runtime of a circuit. A typical access time to DRAM (Dynamic RAM) will take 60ns4. If a key derivation 

function needs to make 1000 accesses to DRAM per password, this could mean an additional 60µs per 

password. This time is small for one particular password, but a brute-force attack that tests for combinations 

of English words would need an additional 3.9 days5 to compute. This estimate does not include time spent 

on the algorithm, just purely from a memory access perspective.  

 There are multiple memory-hard algorithms that could be used for Scrypt, but Percival 

recommended the use of ROMix in particular because it is a sequentially, memory-hard algorithm (Percival, 

7). ROMix acts as if it is randomly accessing memory and does so in a sequential way. The algorithm for 

ROMix is difficult to parallelize. This is good because a sequential algorithm will take longer to perform than 

one that can have all its individual parts performed simultaneously.  

Why Litecoin Creators Chose Scrypt 
 Scrypt is a memory-hard function. Colin Percival argued heavily that creating an ASIC for Scrypt 

would be expensive and unrealistic. The Scrypt algorithm works as a proof-of-work scheme similar to how 

Sha-256 worked for Bitcoin. The main difference is that Scrypt prevents ASICs and GPU mining, which were 

very effective for mining Bitcoin, from having any efficient power over Scrypt. In April 2014, Litecoin reached 

a market cap of $270 million and achieved a network strength of 100GH/s. This equates to 100 TH/s for 

Bitcoin due to the intensity that Scrypt imposes on the hardware mining it6.  

 Because Scrypt is inherently more difficult to perform computationally, many Alt Coins have adopted 

it as the proof-of-work scheme. Dogecoin, a coin popularized by many social networking sites, has been one 

such Crypto-currency that has gained a lot of momentum in only six months7. Many people argue that these 

coins would not be popular if Scrypt were easily mined. This view does not take into account that ASICs are 

what helped Bitcoin rise to its current popularity and allowed it to gain a much higher market cap value. 

Without ASICs, these coins will not flourish to their full potential.  

Developing a Scrypt ASIC 
 The first steps taken towards the development of the Scrypt ASIC were to find and compile the 

mining program responsible for performing Scrypt. This program was then benchmarked and the time spent 

in each portion of the program was calculated. It was quickly apparent that this particular algorithm was 

memory-hard. Looking for good alternatives to traditional hardware was important. In particular, exploring a 

cache dedicated to storing the Litecoin block header was key. Different memory alternatives were then 

analyzed to see which would be the most appropriate for this particular application. Finally, a sample circuit 

designs was created using Verilog and then benchmarked further to see how expensive the design would be.  

                                                             
4 http://www.techopedia.com/definition/2770/dynamic-random-access-memory-dram 
5 There are about 75,000 words, try two word combinations: 75,0002. Multiply by 60*10-6. Then divide those 
seconds into days, and the result is 3.90625 days.  
6 https://en.bitcoin.it/wiki/Litecoin 
7 http://dogecoin.com/ 
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Scrypt in Theory 
 Developing a Scrypt ASIC is not an easy task, however. As Percival noted in his paper, the algorithm is 

designed to be memory-intensive. However, since the time of his writing, the cost to implement certain 

circuits has gone down enough that developing a Litecoin ASIC may prove to be cost effective. In particular, 

the cost of developing the memory can be reduced once the designer is aware that there only needs to be 

128KB of memory per processor. Because Scrypt is not easily parallelizable, it is not necessary to have 

multiple cores, but instead have one core driving a 128KB cache. 

 

Scrypt Call-Flow 

 

Figure 2 Scrypt algorithm call flow. Begins with a Sha-256 hash. Then performs a ROM Mix, Block Mix, and 1024 iterations of Salsa20/8, 
twice. Then Sha-256 hashes the result again. (Alpha-Technologies, 2) 

 Scrypt begins with a basic key derivation function, Sha-256. This value is 128 kB long. This is the only 

amount of space that the algorithm needs to complete. Each Salsa iteration requires a total of 34 cycles. One 

cycle to read in 128 bytes of the overall hashed value. The inside loop (see Appendix A) has two halves, each 

with four sections that can be done in parallel. This means one iteration of inner loop will take 8 cycles, and 

each loop has 4 iterations, so a total of 32 extra cycles. And then an additional cycle for the final loop.  

 In both iterations, there are 2048 calls to salsa because each loop makes two calls. The second 

iteration also has to access the cache to get the new values so that it can continue. Theoretically, this overall 

process could take 139264 cycles to complete one iteration of Scrypt plus whatever latency would be 

required for accessing memory. If one cycle in this circuit took 1 ns, that could mean a potential hash rate of 
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7 KH/s. This is ignoring potential speedup from additional parallelization and potential extra speedup from a 

faster clock cycle.  

Scrypt on a CPU 
 Scrypt runs very differently depending on the hardware that is performing the computation. The 

trials performed primarily ran the program on a processor. The program was run on a computer that had 

Ubuntu installed and was also compiled for the computer8. The code was also compiled using a variety of 

different optimization strategies. In particular: msse2, msse4, O4, and O3 compiler flags were used to analyze 

the particular performance improvements that could be observed on standard commercial hardware. By far 

the fastest optimization strategy was MSSE4 which had a 35% improvement on total runtime over no 

compiler optimization9.  

 Due to the limitation of the testing environment, there was no way to run the program without the 

OS’s (in this case Ubuntu’s) normal programs taking up CPU clock cycles. Increasing performance using 

MSSE4 meant that the program was being optimized for use of all four available cores on the computer10. 

The memory hard portion of the program, in this case the Salsa20 Core function, was taking the most 

processing time. The code is as follows: 

for (i = 0; i < 8; i += 2) { 

    /* Operate on columns. */ 

    x04 ^= ROTL(x00 + x12,  7);  x09 ^= ROTL(x05 + x01,  7); 

    x14 ^= ROTL(x10 + x06,  7);  x03 ^= ROTL(x15 + x11,  7); 

 

    x08 ^= ROTL(x04 + x00,  9);  x13 ^= ROTL(x09 + x05,  9); 

    x02 ^= ROTL(x14 + x10,  9);  x07 ^= ROTL(x03 + x15,  9); 

 

    x12 ^= ROTL(x08 + x04, 13);  x01 ^= ROTL(x13 + x09, 13); 

    x06 ^= ROTL(x02 + x14, 13);  x11 ^= ROTL(x07 + x03, 13); 

 

    x00 ^= ROTL(x12 + x08, 18);  x05 ^= ROTL(x01 + x13, 18); 

    x10 ^= ROTL(x06 + x02, 18);  x15 ^= ROTL(x11 + x07, 18); 

 

    /* Operate on rows. */ 

    x01 ^= ROTL(x00 + x03,  7);  x06 ^= ROTL(x05 + x04,  7); 

    x11 ^= ROTL(x10 + x09,  7);  x12 ^= ROTL(x15 + x14,  7); 

 

    x02 ^= ROTL(x01 + x00,  9);  x07 ^= ROTL(x06 + x05,  9); 

    x08 ^= ROTL(x11 + x10,  9);  x13 ^= ROTL(x12 + x15,  9); 

 

    x03 ^= ROTL(x02 + x01, 13);  x04 ^= ROTL(x07 + x06, 13); 

    x09 ^= ROTL(x08 + x11, 13);  x14 ^= ROTL(x13 + x12, 13); 

 

    x00 ^= ROTL(x03 + x02, 18);  x05 ^= ROTL(x04 + x07, 18); 

    x10 ^= ROTL(x09 + x08, 18);  x15 ^= ROTL(x14 + x13, 18); 

} 

 

                                                             
8Code was obtained from: https://github.com/pooler/cpuminer 
9 Runtime was 2.56ms for no optimization versus 1.89 ms for msse4 optimization. 
10 Intel Core i7 2630QM 
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 The code uses variable placeholder for values in memory so that the code can be easily parallelized. 

Each section of four functions can be run in parallel together as there are no interdependencies on the code. 

If the proper parallelization flags are set during compile time, the program has at least a four time speedup. 

This portion of the algorithm takes approximately 60% of the runtime for the entire Scrypt runtime. 

 38% of the runtime is devoted to memory access. The Salsa20 algorithm begins with 32 reads and 16 

writes from memory where it reads 16 memory locations of the two parameters passed to the function: 

 x00 = (B[ 0] ^= Bx[ 0]); 

x01 = (B[ 1] ^= Bx[ 1]); 

x02 = (B[ 2] ^= Bx[ 2]); 

x03 = (B[ 3] ^= Bx[ 3]); 

x04 = (B[ 4] ^= Bx[ 4]); 

x05 = (B[ 5] ^= Bx[ 5]); 

x06 = (B[ 6] ^= Bx[ 6]); 

x07 = (B[ 7] ^= Bx[ 7]); 

x08 = (B[ 8] ^= Bx[ 8]); 

x09 = (B[ 9] ^= Bx[ 9]); 

x10 = (B[10] ^= Bx[10]); 

x11 = (B[11] ^= Bx[11]); 

x12 = (B[12] ^= Bx[12]); 

x13 = (B[13] ^= Bx[13]); 

x14 = (B[14] ^= Bx[14]); 

x15 = (B[15] ^= Bx[15]); 

Each memory location is read and xor’d with the corresponding location in the second parameter of the 

function. These values are then written back to the B array and also stored locally in variables defined at 

runtime. A similar write-back sequence is performed at the end of the salsa 20 function: 

B[ 0] += x00; 

B[ 1] += x01; 

B[ 2] += x02; 

B[ 3] += x03; 

B[ 4] += x04; 

B[ 5] += x05; 

B[ 6] += x06; 

B[ 7] += x07; 

B[ 8] += x08; 

B[ 9] += x09; 

B[10] += x10; 

B[11] += x11; 

B[12] += x12; 

B[13] += x13; 

B[14] += x14; 

B[15] += x15; 

The final resulting values that were computed in the central algorithmic portion of the salsa 20 function are 

then stored into the corresponding location in the B array. This features another 16 reads and 16 writes, as 

each value is incremented by the values stored locally. Altogether there are 48 reads and 32 writes for the 

salsa20 function. If this time that it takes for the computer to write-back this data can be reduced, it will 

speed up the program significantly.  
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Memory Considerations 
 Deciding on which memory technology to use to implement the Scrypt ASIC is important. There are 

multiple flavors of memory that could be used. The most important piece to note is that cache memory is 

much faster than RAM. The typical DRAM speed is approximately 60 ns, whereas SRAM can achieve access 

times of 0.75 ns (See Appendix B). After analyzing the Scrypt function, the data showed where the majority of 

the time was spent computationally11. 

 

Figure 3 This data shows where the majority of the time spent in Scrypt was. In particular, the ROMix portion of Salsa too the most time. 

 In order to reduce the overall time for the ASIC to perform the task of mining, it is necessary to 

analyze the most common case for the algorithm and minimize the time spent. In particular, optimizing the 

program with compiler flags such as msse4 and O4 both helped optimize the speed and decreased the 

amount of time the program took by approximately 1 second (See Appendix D). There are many memory 

structures that could potentially increase the overall speed of the ASIC, such as STT-RAM, PC-RAM, and 

MRAM.  

SRAM 
 Static random access memory (SRAM) is a type of semiconductor memory that uses a latch based 

circuit to store information in the form of bits. SRAM is a volatile storage, or it does not maintain the data 

across cycling of power for a given memory cell. SRAM is not very power intensive, as it only needs a few 

microwatts when running to maintain power. SRAM is a good candidate for cache because it maintains value 

when not accessed for relatively long periods of time and its very quick. After analyzing output from Cacti 6.0, 

                                                             
11 The CPU miner program was run on a computer that was connected to a Litecoin testnet. This Litecoin testnet 
provided a sample block header with relatively low difficulty (<1). The program then reported the number of 
hashes as well as how long it spent in each function. Overall the program ran 4104 hash for one block.  
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the data showed that the read speed of 0.75 ns. This is very quick and can allow for a maximum clock cycle of 

1.33GHz. (Dillibabu) 

MRAM 
 MRAM is a memory technology that has existed since the 1990s and has a higher density from flash 

RAM and DRAM. MRAM relies on magnetic fields to maintain the value held by a given memory cell. It is non-

volatile, so it lasts for long periods of time without losing data. MRAM has inferior read and write speeds to 

SRAM, which makes it a poor candidate for this ASIC. (Tamai) 

STT-RAM 
 Spin-transfer torque RAM (STT-RAM) is a form of RAM that combines the speed of SRAM with the 

permanence of flash memory. It relies a magnetic tunnel junction, or a way to transmit magnetic fields, to 

modify a state using a spin-polarized current. In other words, the value in the STT-RAM is held constant until 

it receives a magnetic signal changing the state. This can be useful for maintaining values held in memory for 

long periods of time. However, this technology is not quite as fast as SRAM. STT-RAM has a write latency of 

10.61ns, twenty times longer than that of SRAM. This would not make a good candidate for speeding up the 

runtime of the ASIC as it would be much more expensive and slower than using pre-existing technology. 

(Penn State) 

PC-RAM 
 A type of non-volatile random-access memory. Similar to STT-RAM, it does not expire quickly. It 

relies on a complex 3D lattice system to produce long lasting data. However, its latency varies between 10-

100ns for both reading and writing data. Due to its inconsistency and lack of real implementation, it would be 

a poor choice for implementation. (Xie) 

Preliminary Designs and Estimates 
 After performing minor modifications to an online source code12 for an FPGA Scrypt miner, I was able 

to determine the number of logical gates and time delay of the overall circuit. There are 13,446 logical gates 

on the chip, where 12,613 of them are combinational function and 6,567 are logic registers. These logical 

registers have a total of 1,048,576 memory bits to store for one operation. This is 131,072 bytes, or roughly a 

128KB cache.  

 To analyze the timing of the circuit, I found the worst case timing path for one operation to find the 

worst case operation time. In this case the worst case path was 95.762 ns. This timing could allow for at least 

one hash to occur, resulting in an overall timing of 10,526,315 H/s. This speed is much higher than the best 

graphics cards currently, which only clock in at 1 MH/s13.  

 Given the sheer number of logical circuits, however, the overall cost of this ASIC would be very high. 

According to Multi-Project Circuits, the cost per mm2 of producing an ASIC would be approximately 3500 

Euro for a 130nm chip. Given that there are 6,567 SRAM cache registers which each would be 5.007 

𝜇m2/bit14, this would result in approximately 32883.6 𝜇m2 for the cache alone. The combinational circuit 

                                                             
12 https://github.com/kramble/FPGA-Litecoin-Miner 
13 https://litecoin.info/Mining_hardware_comparison 
14 http://www.cl.cam.ac.uk/research/srg/han/ACS-P35/obj-4.2/zhpd802be4b0.html 
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would likely feature an average size of 5𝜇𝑚2, for a total approximate circuit area of 227483.6𝜇𝑚2 or 

0.22748mm2. This chip would initially be about 796.18 Euro to produce, or 1087.26 USD.  

 

Figure 4 it will take approximately 60 days to break even assuming no fluctuations in the most profitable coin's value 

 This chip would be able to produce 10 MH/s. At the currently most profitable Scrypt coins15, this 

would result in $18.50 of revenue per day, not including power costs. This would take $60 to break even at 

current valuations of the most profitable coins. If their value were to increase, the number of days would fall 

as a result. These costs do not take into account the amount of money it would take to pay a team of people 

to produce the ASIC. This only takes into account potential fabrication facilities’ rates of producing one ASIC. 

These costs will likely go down as the cost of producing 130nm chips declines over the coming years.  

How a Scrypt ASIC will better the Alt Coin Economy 
 By providing an ASIC for Scrypt Cryptocurrencies, there will be a resurgence of following in these Alt 

Coins that will be akin to that of Bitcoin. People will purchase the ASICs which will help produce more ASICs 

and also allow for additional investment in the Crypto-currency itself. By offering faster coin production and 

higher investment rates, the overall market cap will increase, thus increasing the probability that the coin will 

expand in intrinsic value. It is possible, that with the number of Scrypt Alt Coins in existence, that the overall 

market cap for all Scrypt coins will be greater than that of Bitcoin.  

 Many new currencies have come about recently to combat the incoming ASICs in the Scrypt market. 

These new crypto-currencies rely on new proof-of-work algorithms such as Scrypt-N16 and Quark17. Scrypt-N 

                                                             
15 
http://www.coinwarz.com/cryptocurrency/?sha256hr=1.00&sha256p=100.00&sha256pc=0.1000&scrypthr=10000
.00&scryptp=500.00&scryptpc=0.1000&scryptnhr=450.00&scryptnp=500.00&scryptnpc=0.1000&x11hr=3000.00&x
11p=500.00&x11pc=0.1000&keccakhr=500.00&keccakp=500.00&keccakpc=0.1000&quarkhr=5000.00&quarkp=50
0.00&quarkpc=0.1000&groestlhr=10.00&groestlp=500.00&groestlpc=0.1000&sha256c=false&scryptc=true&scrypt
nc=false&x11c=false&keccakc=false&quarkc=false&groestlc=false&e=Coinbase 
16 http://give-me-coins.com/support/n-scrypt-guide/ 
17 http://www.qrk.cc/ 
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relies on modulating the number of SHA-256 hashes which would be difficult to implement using an ASIC. 

Quark relies on multiple hashing algorithms per round, preventing easy fabrication of the same circuit. These 

combatants do not realize the support that ASICs provide for the crypto-currency market. By allowing 

entrepreneurs to invest money in ASICs, the market can grow in value. Continuing to complicate and saturate 

the market with new coins and new proof-of-work algorithms will only proceed to fragment and potentially 

cripple the community.  

CPU Mining and GPU Mining Fall Short 
 CPU Mining, as noted earlier, is very slow compared to many alternatives. The runtime for the earlier 

program was roughly 4.1KH/s and a more modern processor would be able to produce hashes at 95KH/s. The 

same program running on a much more powerful GPU, such as an AMD R9 290X would show speeds of 

approximately 804 KH/s18. These speeds pale in comparison to the theoretical 10MH/s that the ASIC design is 

capable of providing. This is roughly a 1000 times increase over CPU and a 10 times increase over GPU 

miners, keeping into consideration possible fluctuations in hashing rates. 

Not only is the effective hashrate of consideration, but the cost of energy for each of these designs is 

important as well. A CPU and GPU needs to be housed within a computer enclosure that is capable of 

providing energy and instructions to both in order to run the program. The Core-i7-4770 runs at 84W and the 

AMD R9 290X runs at approximately 300W. These would incur additional costs above their entry cost in the 

form of electricity bills. This particular ASIC will only use 300W to perform its computation19.  The power 

advantage over these alternatives is apparent, given that it would take ~84,000W for a cluster of CPUs to 

reach comparable performance and 3000W for a cluster of GPUs to reach similar performance to the ASIC.  

Conclusion 
 Research in the development of ASICs is a time consuming process. Steps taken towards this goal 

included compiling and benchmarking Scrypt code, analyzing various components involved with the ASIC 

including memory, and analyzing costs associated with development of the ASIC. Litecoin ASIC development 

will also require further research in the best fabrication facilities and development of a functioning 

prototype. This prototype would likely be made using an FPGA circuit.   

The next steps in developing the ASIC would be to first start pitching the idea to VCs to not only raise 

awareness about the issue but also to raise funds to get a team together to start designing the ASIC. 

Ultimately the current design will likely be redone so that it is more efficient and relies on the experience of a 

team that has built an ASIC before. As soon as these steps are complete, determining the best foundry to 

fabricate the ASIC or potentially get a prototype would be key to making sure that the ASIC is fully functional.  

  

                                                             
18 Speeds for various mining hardware obtained from: https://litecoin.info/Mining_hardware_comparison 
19 Estimate based on current power consumption of comparable ASIC designs: 
https://en.bitcoin.it/wiki/Mining_hardware_comparison 
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Appendix A – Scrypt Algorithm in C++ 
Code obtained from: https://github.com/litecoin-project/litecoin  

/* 

 * Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler 

 * All rights reserved. 

 * 

 * Redistribution and use in source and binary forms, with or without 

 * modification, are permitted provided that the following conditions 

 * are met: 

 * 1. Redistributions of source code must retain the above copyright 

 *    notice, this list of conditions and the following disclaimer. 

 * 2. Redistributions in binary form must reproduce the above copyright 

 *    notice, this list of conditions and the following disclaimer in the 

 *    documentation and/or other materials provided with the distribution. 

 * 

 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 

 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 

 * SUCH DAMAGE. 

 * 

 * This file was originally written by Colin Percival as part of the Tarsnap 

 * online backup system. 

 */ 

 

#include "scrypt.h" 

#include "util.h" 

#include <stdlib.h> 

#include <stdint.h> 

#include <string.h> 

#include <openssl/sha.h> 

 

#if defined(USE_SSE2) && !defined(USE_SSE2_ALWAYS) 

#ifdef _MSC_VER 

// MSVC 64bit is unable to use inline asm 

#include <intrin.h> 

#else 

// GCC Linux or i686-w64-mingw32 

#include <cpuid.h> 

#endif 

#endif 

 

static inline uint32_t be32dec(const void *pp) 

{ 

 const uint8_t *p = (uint8_t const *)pp; 

 return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + 

     ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); 

} 

https://github.com/litecoin-project/litecoin
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static inline void be32enc(void *pp, uint32_t x) 

{ 

 uint8_t *p = (uint8_t *)pp; 

 p[3] = x & 0xff; 

 p[2] = (x >> 8) & 0xff; 

 p[1] = (x >> 16) & 0xff; 

 p[0] = (x >> 24) & 0xff; 

} 

 

typedef struct HMAC_SHA256Context { 

 SHA256_CTX ictx; 

 SHA256_CTX octx; 

} HMAC_SHA256_CTX; 

 

/* Initialize an HMAC-SHA256 operation with the given key. */ 

static void 

HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen) 

{ 

 unsigned char pad[64]; 

 unsigned char khash[32]; 

 const unsigned char *K = (const unsigned char *)_K; 

 size_t i; 

 

 /* If Klen > 64, the key is really SHA256(K). */ 

 if (Klen > 64) { 

  SHA256_Init(&ctx->ictx); 

  SHA256_Update(&ctx->ictx, K, Klen); 

  SHA256_Final(khash, &ctx->ictx); 

  K = khash; 

  Klen = 32; 

 } 

 

 /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ 

 SHA256_Init(&ctx->ictx); 

 memset(pad, 0x36, 64); 

 for (i = 0; i < Klen; i++) 

  pad[i] ^= K[i]; 

 SHA256_Update(&ctx->ictx, pad, 64); 

 

 /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ 

 SHA256_Init(&ctx->octx); 

 memset(pad, 0x5c, 64); 

 for (i = 0; i < Klen; i++) 

  pad[i] ^= K[i]; 

 SHA256_Update(&ctx->octx, pad, 64); 

 

 /* Clean the stack. */ 

 memset(khash, 0, 32); 

} 

 

/* Add bytes to the HMAC-SHA256 operation. */ 

static void 

HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len) 

{ 

 /* Feed data to the inner SHA256 operation. */ 

 SHA256_Update(&ctx->ictx, in, len); 
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} 

 

/* Finish an HMAC-SHA256 operation. */ 

static void 

HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx) 

{ 

 unsigned char ihash[32]; 

 

 /* Finish the inner SHA256 operation. */ 

 SHA256_Final(ihash, &ctx->ictx); 

 

 /* Feed the inner hash to the outer SHA256 operation. */ 

 SHA256_Update(&ctx->octx, ihash, 32); 

 

 /* Finish the outer SHA256 operation. */ 

 SHA256_Final(digest, &ctx->octx); 

 

 /* Clean the stack. */ 

 memset(ihash, 0, 32); 

} 

 

/** 

 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): 

 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and 

 * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1). 

 */ 

void 

PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, 

    size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen) 

{ 

 HMAC_SHA256_CTX PShctx, hctx; 

 size_t i; 

 uint8_t ivec[4]; 

 uint8_t U[32]; 

 uint8_t T[32]; 

 uint64_t j; 

 int k; 

 size_t clen; 

 

 /* Compute HMAC state after processing P and S. */ 

 HMAC_SHA256_Init(&PShctx, passwd, passwdlen); 

 HMAC_SHA256_Update(&PShctx, salt, saltlen); 

 

 /* Iterate through the blocks. */ 

 for (i = 0; i * 32 < dkLen; i++) { 

  /* Generate INT(i + 1). */ 

  be32enc(ivec, (uint32_t)(i + 1)); 

 

  /* Compute U_1 = PRF(P, S || INT(i)). */ 

  memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); 

  HMAC_SHA256_Update(&hctx, ivec, 4); 

  HMAC_SHA256_Final(U, &hctx); 

 

  /* T_i = U_1 ... */ 

  memcpy(T, U, 32); 

 

  for (j = 2; j <= c; j++) { 
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   /* Compute U_j. */ 

   HMAC_SHA256_Init(&hctx, passwd, passwdlen); 

   HMAC_SHA256_Update(&hctx, U, 32); 

   HMAC_SHA256_Final(U, &hctx); 

 

   /* ... xor U_j ... */ 

   for (k = 0; k < 32; k++) 

    T[k] ^= U[k]; 

  } 

 

  /* Copy as many bytes as necessary into buf. */ 

  clen = dkLen - i * 32; 

  if (clen > 32) 

   clen = 32; 

  memcpy(&buf[i * 32], T, clen); 

 } 

 

 /* Clean PShctx, since we never called _Final on it. */ 

 memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); 

} 

 

#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) 

 

static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) 

{ 

 uint32_t 

x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; 

 int i; 

 

 x00 = (B[ 0] ^= Bx[ 0]); 

 x01 = (B[ 1] ^= Bx[ 1]); 

 x02 = (B[ 2] ^= Bx[ 2]); 

 x03 = (B[ 3] ^= Bx[ 3]); 

 x04 = (B[ 4] ^= Bx[ 4]); 

 x05 = (B[ 5] ^= Bx[ 5]); 

 x06 = (B[ 6] ^= Bx[ 6]); 

 x07 = (B[ 7] ^= Bx[ 7]); 

 x08 = (B[ 8] ^= Bx[ 8]); 

 x09 = (B[ 9] ^= Bx[ 9]); 

 x10 = (B[10] ^= Bx[10]); 

 x11 = (B[11] ^= Bx[11]); 

 x12 = (B[12] ^= Bx[12]); 

 x13 = (B[13] ^= Bx[13]); 

 x14 = (B[14] ^= Bx[14]); 

 x15 = (B[15] ^= Bx[15]); 

 for (i = 0; i < 8; i += 2) { 

  /* Operate on columns. */ 

  x04 ^= ROTL(x00 + x12,  7);  x09 ^= ROTL(x05 + x01,  7); 

  x14 ^= ROTL(x10 + x06,  7);  x03 ^= ROTL(x15 + x11,  7); 

 

  x08 ^= ROTL(x04 + x00,  9);  x13 ^= ROTL(x09 + x05,  9); 

  x02 ^= ROTL(x14 + x10,  9);  x07 ^= ROTL(x03 + x15,  9); 

 

  x12 ^= ROTL(x08 + x04, 13);  x01 ^= ROTL(x13 + x09, 13); 

  x06 ^= ROTL(x02 + x14, 13);  x11 ^= ROTL(x07 + x03, 13); 

 

  x00 ^= ROTL(x12 + x08, 18);  x05 ^= ROTL(x01 + x13, 18); 
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  x10 ^= ROTL(x06 + x02, 18);  x15 ^= ROTL(x11 + x07, 18); 

 

  /* Operate on rows. */ 

  x01 ^= ROTL(x00 + x03,  7);  x06 ^= ROTL(x05 + x04,  7); 

  x11 ^= ROTL(x10 + x09,  7);  x12 ^= ROTL(x15 + x14,  7); 

 

  x02 ^= ROTL(x01 + x00,  9);  x07 ^= ROTL(x06 + x05,  9); 

  x08 ^= ROTL(x11 + x10,  9);  x13 ^= ROTL(x12 + x15,  9); 

 

  x03 ^= ROTL(x02 + x01, 13);  x04 ^= ROTL(x07 + x06, 13); 

  x09 ^= ROTL(x08 + x11, 13);  x14 ^= ROTL(x13 + x12, 13); 

 

  x00 ^= ROTL(x03 + x02, 18);  x05 ^= ROTL(x04 + x07, 18); 

  x10 ^= ROTL(x09 + x08, 18);  x15 ^= ROTL(x14 + x13, 18); 

 } 

 B[ 0] += x00; 

 B[ 1] += x01; 

 B[ 2] += x02; 

 B[ 3] += x03; 

 B[ 4] += x04; 

 B[ 5] += x05; 

 B[ 6] += x06; 

 B[ 7] += x07; 

 B[ 8] += x08; 

 B[ 9] += x09; 

 B[10] += x10; 

 B[11] += x11; 

 B[12] += x12; 

 B[13] += x13; 

 B[14] += x14; 

 B[15] += x15; 

} 

 

void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char 

*scratchpad) 

{ 

 uint8_t B[128]; 

 uint32_t X[32]; 

 uint32_t *V; 

 uint32_t i, j, k; 

 

 V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); 

 

 PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 

1, B, 128); 

 

 for (k = 0; k < 32; k++) 

  X[k] = le32dec(&B[4 * k]); 

 

 for (i = 0; i < 1024; i++) { 

  memcpy(&V[i * 32], X, 128); 

  xor_salsa8(&X[0], &X[16]); 

  xor_salsa8(&X[16], &X[0]); 

 } 

 for (i = 0; i < 1024; i++) { 

  j = 32 * (X[16] & 1023); 

  for (k = 0; k < 32; k++) 



W a t k i n s  -  P a g e  | 17 

 

   X[k] ^= V[j + k]; 

  xor_salsa8(&X[0], &X[16]); 

  xor_salsa8(&X[16], &X[0]); 

 } 

 

 for (k = 0; k < 32; k++) 

  le32enc(&B[4 * k], X[k]); 

 

 PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t 

*)output, 32); 

} 

 

#if defined(USE_SSE2) 

// By default, set to generic scrypt function. This will prevent crash in 

case when scrypt_detect_sse2() wasn't called 

void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char 

*scratchpad) = &scrypt_1024_1_1_256_sp_generic; 

 

void scrypt_detect_sse2() 

{ 

#if defined(USE_SSE2_ALWAYS) 

    printf("scrypt: using scrypt-sse2 as built.\n"); 

#else // USE_SSE2_ALWAYS 

    // 32bit x86 Linux or Windows, detect cpuid features 

    unsigned int cpuid_edx=0; 

#if defined(_MSC_VER) 

    // MSVC 

    int x86cpuid[4]; 

    __cpuid(x86cpuid, 1); 

    cpuid_edx = (unsigned int)buffer[3]; 

#else // _MSC_VER 

    // Linux or i686-w64-mingw32 (gcc-4.6.3) 

    unsigned int eax, ebx, ecx; 

    __get_cpuid(1, &eax, &ebx, &ecx, &cpuid_edx); 

#endif // _MSC_VER 

 

    if (cpuid_edx & 1<<26) 

    { 

        scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_sse2; 

        printf("scrypt: using scrypt-sse2 as detected.\n"); 

    } 

    else 

    { 

        scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_generic; 

        printf("scrypt: using scrypt-generic, SSE2 unavailable.\n"); 

    } 

#endif // USE_SSE2_ALWAYS 

} 

#endif 

 

void scrypt_1024_1_1_256(const char *input, char *output) 

{ 

 char scratchpad[SCRYPT_SCRATCHPAD_SIZE]; 

    scrypt_1024_1_1_256_sp(input, output, scratchpad); 

} 
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Appendix B – Cacti Output for 128kB SRAM Cache 
---------- CACTI version 6.0, Non-uniform Cache Access ---------- 

 

Optimal number of banks - 32 

Grid organization rows x columns - 4 x 8 

Average access latency to a random bank  

 (Bank Access time + Avg. Network Delay + Contention Cycles)- 77 cycles 

Average dynamic energy/access (nJ) - 1.06637  

Network frequency - 5 GHz 

Cache dimension (mm x mm) - 8.93355 x 15.768 

 

 

Router stats: 

 Maximum possible network frequency - 5.40707 GHz 

 Network frequency - 5 GHz 

 No. of Virtual channels - 4 

 No. of pipeline stages - 3 

 Link bandwidth - 64 (bits) 

 No. of buffer entries per virtual channel - 8 

 Simple buffer access (read) - 0.000147822 (nJ) 

 Simple buffer access (write) - 0.000200725 (nJ) 

 Cross bar access energy - 0.00108219 (nJ) 

 Arbiter access energy - 0.000115668 (nJ) 

 

 

Wire stats: 

 Wire type - Full swing global wires with 30% delay penalty 

 Wire width - 64 nm 
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 Wire spacing - 64 nm 

 Horizontal link delay - 0.207929 (ns) 

 Vertical link delay - 0.252422 (ns) 

 Delay/length - 0.105495 (ns/mm) 

 Horizontal link energy -dynamic/access 0.000131451 (nJ) 

                        -leakage 1.57664 (nW) 

 

 Vertical link energy -dynamic/access 0.000159579 (nJ) 

                      -leakage 1.91402 (nW) 

 

 Energy/length per wire - 7.14518e-05 (nJ/mm) 

 

 

 Detailed Bank Stats: 

    Bank Size (bytes): 2097152 

    Number of banks: 1 

    Associativity: 8 

    Block size (bytes): 128 

    Read/write Ports: 1 

    Read ports: 0 

    Write ports: 0 

    Technology size: 0.03um 

 

    Access time (ns): 0.75198 

    Cycle time (ns):  0.147279 

    Total dynamic read energy per access (nJ):0.121163 

    Total leakage power of a bank (mW):1192.34 

    Cache height x width (mm): 2.233379 x 1.839713 
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    Best Ndwl (L1): 8 

    Best Ndbl (L1): 32 

    Best Nspd (L1): 0.500000 

    Best Ndcm (L1): 8 

    Best Ndsam (L1): 4 

 

    Best Ntwl (L1): 2 

    Best Ntbl (L1): 4 

    Best Ntspd (L1): 2.000000 

    Best Ntcm (L1): 1 

    Best Ntsam (L1): 4 

 

    Data array, H-tree wire type: Global wires with 20% delay penalty 

    Tag array, H-tree wire type: Global wires with 30% delay penalty 

 

Time Components: 

 

  Data side (with Output driver) (ns): 0.75198 

 H-tree input delay (ns): 0.288951 

 Decoder + wordline delay (ns): 0.0896385 

 Bitline delay (ns): 0.0385681 

 Sense Amplifier delay (ns): 0.03 

 H-tree output delay (ns): 0.304822 

 

  Tag side (with Output driver) (ns): 0.318609 

 H-tree input delay (ns): 0.055129 

 Decoder + wordline delay (ns): 0.0826787 
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 Bitline delay (ns): 0.0425134 

 Sense Amplifier delay (ns): 0.03 

 Comparator delay (ns): 0.0116144 

 H-tree output delay (ns): 0.0966737 

 

Power Components: 

 

  Data array: Total dynamic read energy/access  (nJ): 0.104652 

 Total leakage read/write power all banks at maximum frequency (mW): 1152.16 

 Total energy in H-tree (that includes both address and data transfer) (nJ): 0.0947923 

 Decoder (nJ): 0.000141478 

 Wordline (nJ): 0.000422674 

 Bitline mux & associated drivers (nJ): 0.000255944 

 Sense amp mux & associated drivers (nJ): 0.000124171 

 Bitlines (nJ): 0.00627315 

 Sense amplifier energy (nJ): 0.00110592 

 Sub-array output driver (nJ): 0.00128588 

 

  Tag array:  Total dynamic read energy/access (nJ): 0.0165109 

 Total leakage read/write power all banks at maximum frequency (mW): 40.1795 

 Total energy in H-tree  (nJ): 0.0111652 

 Decoder (nJ): 5.22869e-05 

 Wordline (nJ): 6.28864e-05 

 Bitline mux & associated drivers (nJ): 3.49353e-05 

 Sense amp mux & associated drivers (nJ): 0 

 Bitlines (nJ): 0.00154038 

 Sense amplifier energy (nJ): 0.00055296 

 Sub-array output driver (nJ): 0.00291354 
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Area Components: 

 

  Data array: Area (mm2): 3.66352 

 Height (mm): 2.23338 

 Width (mm): 1.64035 

    Area efficiency (Memory cell area/Total area) - 68.4658 

 

  Tag array: Area (mm2): 0.114996 

 Height (mm): 0.576813 

 Width (mm): 0.199364 

    Area efficiency (Memory cell area/Total area) - 68.1618 
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